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Abstract: The aim of this article is to establish correlations between different cat-
egories of analytic univalent functions using a specific convolution operator defined
by the Wright function. More specifically, we explore these correlations among the

classes of analytic univalent functions k—% ¢V (B), k—7;(8), Z(B), Z™ (A, B),
k—2PU€¢V"(B) and k — 2.7 (B) in the open unit disc U.
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1. Introduction
Let o represent the set of all analytic functions within the open unit disk

U:={zeC : |z| <1}
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with the normalization f(0) = 0 and f/(0) = 1, we denote by . the subset of </
comprising functions that are univalent in U. The functions belonging to the class
. can be expressed through a power series expansion centered at the origin in the

following manner:
2) :z+Zanz”. (1.1)
n=2

Porwal and Dixit [2, 12] introduced the families k — 2 €7 (3) and k — .77 (3) as
A function f of the form (1.1) is classified as being in the class k — Z €7V (P)
if it satisfies the following condition

R (1 + (1 + ke™) %(5)) < B, (1.2)

where 0 < k < o0, ¢€Rand1<ﬁ<%k

A function f of the form (1.1) is said to be in the class k — .7 () if it satisfies
the following condition

R ((1 + ke') %,Ej) — e’¢) < B, (1.3)

A4k
where 0 < k < 00, € Rand 1 < 8 < — =

Further, let ¥ be the subclass of . consisting of functions of the form

z) :z+Z|an|z”. (1.4)
n=2

Let
k— PUCV(B) =k —UECV (B)NYV (1.5)

and
k— 298 =k— BNV (1.6)

It is worthy to note that for k& = 0 the classes k — Z€¢7V"(8), k — 7 (B),
k—2U%€V"(B) and k — .77 (B) are reduce to the classes Z(3), . (B), % (B)
and ¥ (B) respectively (see [20]).
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In 1995, Dixit and Pal [1] introduce the class Z7 (A, B) consisting of functions
f(2) of the form (1.1) which satisfy the inequality

f'(z) =1
(A= B)T = B(f'(2) = 1)

<1, TeC\{0}, -1<B<A<1, =zel.

(1.7)
Also, Z(3) denote the subclass of .o/ consisting of functions f(z) of the form (1.4)
which satisfy the condition

R (f(2) < B, 1<p<2, zeU. (1.8)

In 1933, Wright [22] introduced a special function, which is named as Wright
function (see also [5])and is defined as

00 o
%\“u(Z) = Z% m, A > —]., n e (C, (19)

where I'(+) stands for the usual Gamma function. The series (1.9) is absolutely

convergent for all z € C, while for A = —1 this is absolutely convergent in U. Also,

Wright [22] shown that (1.9) is an entire function for A > —1. The applications

of Wright function and its generalization were used in partitions of natural num-

bers, integral transform, differential equations, wave equations etc. Noteworthy

contributions in this direction may be found in [4, 6-8, 10, 11, 13, 14, 16, 17, 19].
Let W represent the normalized Wright functions defined by

o r ot
Wi u(z) =T(w) 275, u(2) = Z %7 A>-1, p>0, (1.10)
n=0

for all z € U. The analytical and geometrical properties of normalized Wright
function were studied by [7, 11, 13].
The convolution (or, Hadamard product) of two power series f(z) of the form

(1.1) and
g(z) = Z bnzna
n=0

is given by

o0

(fr9)(2) = f(2) % g(2) = anbnz",  z€U.

n=0



178 South FEast Asian J. of Mathematics and Mathematical Sciences

Now, we consider a linear operator Q(\, p) : o/ — 7 defined by

AN, 1) (2) = W, () —z+Z (e et BT

The utilization of special functions such as confluent hypergeometric functions,
Gauss hypergeometric functions, generalized hypergeometric functions, Mittag-
Leffler functions, Bessel functions, and generalized Bessel functions presents in-
triguing research avenues in Geometric Function Theory. One can refer [4, 6, 10,
14-19] for details. In this current paper, we establish correlations among the classes
k—weyv(B), k—7y8), ZB), Z" (A, B), k—2PUCV"(B) and k— 2.7 (B).
We associated with normalized Wright function.

2. Preliminary Results
To prove our main results we shall require the following lemmas:

Lemma 2.1. [12] A function f(z) € .7 of the form (1.1) and
Zn[n—l—nk—k—m|an| <pg-1,
n=2

then f € k —UEV* (D).
Lemma 2.2. [12] A function f(z) € . of the form (1.1) and

(e}

Z(n—l—nk—k—ﬁﬂanl <pB-1,

n=2
then f € k — ().
Lemma 2.3. [1] If f € #7 (A, B) is of the form (1.1), then
(A_—B)m’ ne N\ {1}.

la,| <
n

The result is sharp.
Lemma 2.4. [21] If f € Z (B) is of the form (1.1), then

lan| < % neN\{1}.

Lemma 2.5. [12] Let f(z) € .7 be of the form (1.4) and f € k — PUEC V™ (5).

Then 5.1
< .
jan] < n(n+nk —k— )
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Lemma 2.6. [12] Let f(z) € & be of the form (1.4) and f € k — 2.7 (3). Then

6—1
n+nk—k—p

|an| <

Lemma 2.7. [3] For all A > 0 and p > 0, we have

> U'(u) _ B
(a) Z CE DS =Wy (1) — 1.

(®) ,:0 nl r((ni(?)x r = ) = WD)

= F(M) _ 2 /
( ) 2 (n _ 1>‘ F(( 1))\ + ,U/) - W)\,p<1) B 2W}\,,u(1) + QW/\»M(l)'

S F(:u) _ 1" _ 1" y .
@ X TR T~ WD) = 3WE L (1) +6W, (1) —6W, (1),

3. Inclusion Relations
In our first theorem of this section we obtain an inclusion relation between the

classes Z7 (A, B) and k — %€ V().

k
Theorem 3.1. If A\, pn > 0, for some k(0 < k < ), f(1 <5 < 3%) the

function f € Z™ (A, B) and the inequality
(A=B)|r| [(k+ )W, (1) = (k+ Wy () +p-1] <p-1 (3.1)

is satisfied, then Q(\, u)f € k — % €V*(B), where k — %€ V" (8) and Z™ (A, B)
are respectively, defined by (1.2) and (1.7), and Q(\, p) is the operator defined by
(1.11).

Proof. Since

- I'(w) an2"
A Wfz) ==+ ; T((n—DXA+p) (n—1)

To prove that Q(\, p)f € k — %€V (B), it is sufficient to prove that

= '(p) 1
;n[n+nk—k—B]F<<n_1))\+u> (n—l)!|a"| <p-1.
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Now,

- o () 1
2 nlntnk =k = Bl o

I'(w) 1 }
F(n—=1)A+p) (n—1)!

- > () 1 = L'(p) 1
= (A_B)Tl{(l—i_k)gf((nl))mLu) ST D IY - (e} wn (nl)!}

n=2

n=2

(A—B) ﬂZ[ [(n—1)(1+k)— (B8—1)]

o0 oo

- ['(p) 1 T'(p) 1
_(A_B)T|{(1+k)z;)wzﬂ)>\+mm_(ﬁ_l)zr((nJrl))\Jru) (n+1)’}

n n=0
B)lr|{(1 [ (D) = Wi u(D] = (8= 1) Wy (1) = 1]}
\TI{ w(1) = (k+ B)Wy, (1) + 8 — 1}

IA

(A
(A
B —
based on the provided hypothesis. This concludes the proof of Theorem 3.1.

Theorem 3.2. If A\, >0, for some k(0 <k <o0), 51 (1 <p1<2),(1<F<

k
5+ ——), the function f € Z7 (B1) and the inequality

(B =) [(k+DW, (1) = (B +B)Wy, (D) +B8-1] < -1 (3-2)

is satisfied, then Q\, p)f € k — UCV*(B), where k — UEV*(B) is defined by
(1.2), and Q(\, n) is the operator defined by (1.11).
Proof. Since

n

aAp 2
QA - e
A mf Z+§: n—1A+uMn—1ﬂ

To prove that Q(\, p)f € k — U €V (B), it is sufficient to prove that

I'(p)
T(n—1)XA+p) (n—1)

in[n—i—nk—k—ﬂ] la,| < B —1.
n=2
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Now,

3 g I'(p) L
;n[n—knk k B]F((n—l)/\-i—u) (n—l)!|"|

o0

< (B —1) Z [[(n -1 +k) - (B-1)] {(n _1“(1/;))\ ) o _1 1)[}

N 1 - T'(p) 1
= (B —1) Hk T((n—1)A+p) (n 2)!_('6_1);_:2F((n1)/\+u)(n1)1}

T (1) 1 - (1) 1
(1+F) Zr n+1)>\+u)7_ _1);I‘((n+1))\+u) (n—i—l)!}

=6 -1{@ [ — Wy ()] = (B—1)[Wy, ,(1) — 1]}
= (B -1{@ (k+ﬁ)WA W(1)+8—1}
<B-1,

/—/H/—/H

=B —-1)

based on the provided hypothesis. This concludes the proof of Theorem 3.2.

k
Theorem 3.3. If A\, > 0, for some k(0 < k < o), f(1 <5< 3; ), the

function f € k—PUE€V*(5) and the inequality Wy ,(1)—1 < 1, then Q(\, p)f €
k—UCV*(B), where k— %€V (B) and k— PUE V™ (5) are respectively, defined
by (1.2) and (1.5), and QA p) is the operator defined by (1.11).

Proof. Let f € k — %€V (B), where f is of the form (1.4). Since

Ap 2
Q(\, - e
A mf Z+Z n—l)\+u)(n—1)!

n

To prove that Q(\, p)f € k — X €YV (5), in view of Lemma 2.1, it is sufficient to
prove that

- L'(p)
;n[mnk—k—ﬁ]r((n_l)Hm (n_1>!|an|§6—1.
Now, in view of Lemma 2.5, we have
> e L) L S T(11) 1
D (T pean RV ”;{r«nmw =

i[ n+1 )\+u) (nil)!]

n=0

(B=1)[Wx (1) =1]
Bf 15

IN I
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which is true for all A, p > 0. This completes the proof of Theorem 3.3.

4+ k
Theorem 3.4. If A\, > 0, for some k (0 < k < o0), B(1 <5 < %) the

function f € k — P57 (B) and the inequality
Wy (1) —1<1 (3.3)

is satisfied, then Q(\, p)f € k—%€V"(B), where k—%€V"*(B) and k— 2.7 ()
are respectively, defined by (1.2) and (1.6), and Q(X, p) is the operator defined by
(1.11).

Proof. Let f € k — Z2.7(3), where f is of the form (1.4). Since

n

Ap 2
Q(\, - e
A mf Z+§: n—1A+uMn—U!

To prove that Q(\, p)f € k — %€V (5), in view of Lemma 2.1, it is sufficient to
prove that

C'(w)
I'((n—=1)A+u) (n—1)!

la,| < 6 —1.

Zn[n+nk‘—k—5]
n=2

Now, in view of Lemma 2.6, we have

= I'(p) 1
;”[n+”k_k_ﬁ]r((n—1n+u) e

= T(p) 1
<('6‘1)nzz[”r((n1n+u) (nl)']
B - T(n) 1 - T (u) 1
_(ﬂ_l){;r((n—l))\+ﬂ) (n—2)!+nz::2l—‘((n—1)>\+/¢) (n—l)!}
e T(n) 1 < L(n) 1
=8 D{%F((n—i—l))\—i—,u) n! +TLZ::OF((n+1))\+,u) (n+1)!}
= (8= D {[W) ,(1) =Wy (D] +[Wa, (1) — 1]}
= (B-1){W) (1) -1}
gﬁ_lv

by the given hypothesis. This completes the proof of Theorem 3.4.

4+ k
Theorem 3.5. If A\, u > 0, for some k (0 < k < o0), B(1 < 5 < %), the
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function f € Z (A, B) and the inequality

(A= B {0 R (1) = ot )

Wy (1 )—1]+B—1}§5—1
(3.4)

is satisfied, then Q(A, p)f € k — 7;(8), where k — 7 (B) and Z7 (A, B) are
respectively, defined by (1.3) and (1.7), and QU\, p) is the operator defined by
(1.11).

Proof. Let f € k — .*(3), where f is of the form (1.4). Since

= D) ae
A Wfz) ==+ ; T((n—DXA+p) (n—1)

To prove that Q(\, p)f € k—.77(53), in view of Lemma 2.2, it is sufficient to prove

that -
;[n—l—nk -k Al —F(l/;)/\—i—,u) ol S
Now, in view of Lemma 2.5, we have
,i[“”k_k‘ﬁ]r((n—r(f)%m i
=B {niz [(Hk)_ kiﬂ T((n —F(ll;)A+u) (nin!} ( o] < 2 75) |T|)
(4B g”mr«nfiﬁ&m . i TSI P 1)!}

00 F(,Uf) 1 © 1
D (T p e Koy AU B o n+1 HM) (”“)!}

- L(p) 1
2 R T D)

= r 1 = 1
:(A‘B”T{Z(“k)r((n_(f;&w) ot kA ;r n—(lgL)A+u) n'}

r [ T(p— ) 1 L(p—A)
_(’”ﬁ)r(u—A) ,;F((nH)AﬂL*A) (n+1)! T(w) H

L'(p)
D(p—A)

W, A<>—11+/3—1}

—(A-B)r {(1 FR) W (1) 1]~ (k4 B)

I'(p)
T —A)

W oa(1) — 1]+ (k + 6)}

—(A-B)r {(1 FRW (1) — (k4 B)
S Bf 13
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by the given hypothesis. This completes the proof of Theorem 3.5.
Theorem 3.6. If A\, u > 0, for some k(0 <k <o0), (1< <2),(1<p<

44k
g ), the function f € Z7 (p1) and the inequality

(W, pma(1) = 1]+ 8 — 1} <B-1
(3.5)

B = ) {1+ W) (4 5)

is satisfied, then Q(A, p)f € k — 7 (B), where k — 7 (B) is defined by (1.3), and
Q(A, p) is the operator defined by (1.11).
Proof. Let f € k — .*(/3), where f is of the form (1.4). Since

n

S T ae
QA () =2+ ; T((n—DA+p)(n—1)"

To prove that Q(\, p)f € k—.7;(8), in view of Lemma 2.2, it is sufficient to prove
that

g;m+nk—k—ﬂr«nf%&+ﬂ)m_lw%Jfﬂ_L
Now, in view of Lemma 2.5, we have

§[n+nk kﬂ]r((n_r(l‘;)Hu) <nimlanl

(&1){2 {(Hk) k;ﬂ} F((nf(lgt)A+u) <n_11>!} < 0] < (A_f) |T|>
=(B-1 {i(Hk)F((n _P(lli)A+u) (nil)l ‘ni kiﬁmn _F(lli)A+u) (nil)!}
:(Bl_1){§<1+k)F((nf(1/;)A+u) ey ) ilw iv}
= (B _1){2(1+k)1“((nf(1/;)>\+u) (nil)! _(Hﬁ)i F((n+F(1§L>A+u) (n+12>!}
=(B-1) {ni)(l O +F(1/;)A+u) (mlr 0l

~(k+ )% Zr n+1uA+A)u N (nil)! _F(ﬁ(Z)A)]}
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= = D {0 B ) =11 (e B s [, ea) - 11 - S|
:(ﬁl_1){(1+k)W)\’u(1)—(k+ﬁ)(F()>\)[W)\ e )\( )_1]+5_1}

SB_17

by the given hypothesis. This completes the proof of Theorem 3.6.

k+4
Theorem 3.7. If A\, u > 0 for some k(0 < k < 00), 5(1 < B < %), the

function f € k — 2.7 (B) and the inequality
Wy (1) <2

is satisfied, then Q(\, p)f € k — ;) (B), where k — 7 (8) and k — 2.7 (B) are
respectively, defined by (1.3) and (1.6), and QU\, p) is the operator defined by

(1.11).
Proof. Let f € k — 2.7(B), where f is of the form (1.4). Since

n 2
A S _Z+Z n—1A+u)(n—1)!'

n

To prove that Q(A, u)f € k — £ (B), in view of Lemma 2.2, it is sufficient to
prove that

e ¢}

I'(p)
;[“”’“_k_mr((n— DAt (no1)

Now, in view of Lemma 2.6, we have

|0Jn‘ Sﬁ_l

= T(u) 1 . p-1
Z[mnk_k_mr((n_l)HM) gl (el < o)

n=2

glf n—l )\+M) (n—ll)']
;;{F(n—i—l YA+ ) (nil)!]
—<5 [WAM(l
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which is true for all A\, g > 0. This concludes the proof of Theorem 3.7.

k+4
Theorem 3.8. If A\, > 0, for some k (0 < k < o), B(1 <5 < %) the

function f € k — PUE V" (B) and the inequality

I'(p)
I'(p—2A)
satisfied, then Q(\, p)f € k — ;7 (B), where k — 7 (B) and k — PUECV ()
are respectively, defined by (1.3) and (1.5), and Q(\, p) is the operator defined by

(1.11).
Proof. Let f € k — %€V (B), where f is of the form (1.4). Since

anz
A w1 Z+Z n—l)\—l-,u)(n—l)!'

To prove that Q(\, u)f € k — P27 (B), in view of Lemma 2.2, it is sufficient to
prove that

(Wi (1) =1] <2

n

3 () 1

Now, in view of Lemma 2.6, we have

> L I'(p) Lo (o p-1

1
{F n—l )\—f—,u n'}

Mgm

{F n+1 >\+u (ni?)!}

0

IN@7 u A) 1 T(p—A)
T(u [Z DA+pu—A) (n+1)! T(p) H

<

13

—(-1)

E

=B-1
<p-1,

|—|/—"«

F(M =5y W ea(1) — 1) - 1}

which is true for all A, u > 0. This concludes the proof of Theorem 3.8.
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